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Abstract

Exact space periodic solutions to the Navier—Stokes equations are derived that are invariant with
respect to any crystallographic groudRa with purely rotational point groug’. A complete classifi-
cation of the space periodic NSE solutions with pairwise non-interacting Fourier modes is obtained.
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1. Introduction

In this paper, we solve the problem of complete classification of solutions to tharit}
3-D Navier—Stokes equations

v 1 1 ,

— +(V-V)V=—-Vp+vAV 4 —f, divV =0, (1.1)

ot p p

with non-interacting Fourier modes, provided that solutions are space periodic with arbitrary

vector periodp1, p2, p3. HereV(z, x) is the fluid velocity vector fieldp(z, X) is the pressure
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andf (z, X) is the body force, vectax = (x1, x2, x3). We show that there are exactly four
infinite families of solutions with pairwise non-interacting modes. Among them there are
two classes of classically known exact solutifhisand two classes of new exact solutions
[2-5]. The most important solutions depend on all four variableg, x2, x3 and have

no geometrical symmetries. The solutions correspond to the infinite series of invariant
submanifolds for the Navier—Stokes equations.

The standard 22-periodic solutions to the NSE were considered in paj@8]. We
show that the Navier—Stokes dynamical systems for space periodic solutions with different
vector periodi, p2, p3 generically are not equivalent to each other and have qualitatively
different classes of exact solutions. The moduli space of non-equivalent Navier—Stokes
dynamical systems has dimension 6.

We derive exact solutions to the Navier—Stokes equations that are invariant with re-
spect to certain crystallographic groupsRA. Since the general problem of existence and
smoothness of solutions to the NSE is unresol#, we construct solutions with crys-
tallographic symmetries in exact form. As is knoyiri], there are 219 non-isomorphic
crystallographic group§ in three dimensions. Among them, there are 52 grabipgich
have purely rotational point grougs c SO(3) that can be either the octahedral gr@Jp
or tetrahedrall, or dihedralD,,, or a cyclic groupC,, wheren = 2, 3, 4, 6. We construct
exact NSE solutions that are invariant with respect to any of the 52 crystallographic groups
with purely rotational point groups'.

2. Dynamical system for the space periodic solutions

(I We study NSE solutions that satisfy the periodicity conditions

V(e X+p) =V Xx).,  Vpx+p;)=Vp(X),

f(t, x+p;) =1(1, %), (2.1)
wherei = 1, 2, 3 and vector periodgs, p2, p3 are linearly independent. The integral com-
binationsn1p + naop2 + n3ps, n; € Z, form a lattice of periodsi. Let vectorsky, ko, kg
are defined by the equations

k; - p; = 2ﬂ5ij. (2-2)

The integral combinationsi1k + moky + m3ks, m; € Z, form the reciprocal latticet™.
Vectorsk; arek; = Ap; x p, wherex = 2x[py - (p2 x p3)]~! and indices, j, k form a
cyclic permutation. We present the space periodic solutions (2.1) in the form of Fourier series

V(e x) = > Vi@explk-x).,  ftx)= > fi(t)exp(k - x), (2.3)

keA* keA*

Vp(t,x) = po(t) +1 ) pr()k expk - X),

keA*

where summation is taken over all vect&ref the reciprocal latticer*. For real functions
V(t, x), p(t,x) andf(z, x), the Fourier componentgy, fx € C3, and px € C satisfy the
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relations
V_k = Vi, P—k = Pk f = fi. (2.4)
VectorsVo(t), po(r) andfo(z) are real. The incompressibility equation dfv= 0 implies
k-Vi =0. (2.5)

Substituting formulag2.3) into Eq. (1.1) we obtain an infinite-dimensional dynamical
system fom # 0

Va+i D (Vi m)Vm+ n+an —p Yy =0. (2.6)
k+m=n

Forn = 0, usingEq. (2.5)we obtain
Vo + pil(po —fg)=0. (2.7)

Forn # 0, all functionsp, can be excluded frorkq. (2.6) Indeed, projectind=q. (2.6)
onto vectom and usingeq. (2.5) we obtain

pn = ——n > (Ve MV — —n-fo. (2.8)
k+m=n
However, vectopg(r) cannot be excluded from the Navier—Stokes dynamical system as it
clearly follows fromEq. (2.7) This property is closely connected with the existence of a
large group of symmetries of systgh6) and (2.7)see Sectiod.
Substituting formulag2.8)into Eq. (2.6) we obtain the equivalent form:

. 1
Vi =—n vVn+—nx(nx > (Vi m)Vm)—anx(nxfn)

k+m=n
Vo = p~Y(fo — po). (2.9)
where we use formulX — (n - X)n/n? = —n x (n x X)/n2.
() Using the identity
Ax(BxC)=(A-C)B—(A-B)C, (2.10)

andEg. (2.5) we transformEqg. (2.9)into dynamical system

Vnz—nzvvn+#nx( ( > (k—m)x[vkxva—fn)),

k+m=n
(2.11)

where all vectork, m, n belong to the reciprocal lattica*. In view of Proposition 50f
Section 4we assum&/o(r) = 0in Eq. (2.11)

The dynamical system(®.11)for space periodic solutions with two different triples of
periodsp1, p2, p3 are equivalent if and only if the corresponding latticegre connected
by an orthogonal transformation. The moduli space of non-equivalent sy§ehighas
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dimension 6. Indeed, if the two systerfi&s11) are equivalent, then their critical points
Vi = 0 have equal eigenvalues. These eigenvaluesate —n?v, for all vectorsn e A*.
Itis evident that the set of numbers1? for n € A* defines the latticet* up to an arbitrary
rotation and inversion. Since the lattice is defined by its basikq, ko, k3, the moduli
spaceM of non-equivalent dynamical systerg&s11)has dimension 6.

Remark 1. The multiplicities of the eigenvalues, = —n?v are defined by the cardinality
of solutions to the equation

3

n2= Zninjki-kj =C, n; € 7. (212)

L

Ifthe scalar products; - k ; are rationally independent th&i. (2.12has either two integral
solutions {1, n2, n3) and (n1, —n2, —n3) or none. Hence on the invariant submanifold
defined by the constrain{2.4) and (2.5all eigenvalues.,, have multiplicity 4 (since the
complex vectors/, are orthogonal to vectons). Let us show however that for a dense
set of matricesk;; = k; - k; the multiplicities of eigenvalues, = —n2y or the number
of solutions toEq. (2.12)can be arbitrarily large whe@ — oo. Indeed, suppose that
matrix K;; is proportional to a rational matrik; - k; = br;;/q, wherer;;, q € Z, b € R.
This amounts to the condition

o

pi-pj=bt@mAR™Y.  Rj= 5. (2.13)
Let Py be the set of (& + 1)° pointsn = n1ky + noko + n3ks € A*, where—N < n; <
N. On thePy, we have

b_lnz = b_lZninjki . kj =
ij

L< }Z Irij | N2.

q9 4 T

Hence the rational-valued functidimn? = r/q has at mos®_ |r;j|N? distinct values
on the setPy of (2N + 1)° points. Then by Dirichlet's principle there are at least
Ky = [(2N + 1)3/ 3" |r;;IN?] points of Py where functionb=1n? has the same value.
As Ky ~cN — oo for N — o0, Eq. (2.12)does have arbitrarily many solutions as
C — oo. Evidently this is true for a dense set of periquds p2, ps satisfying condition
(2.13)

Remark 2. The above arguments are applicable also to any vector equations that contain
the Laplace operator of velocity(z, x), for example to the vector diffusion equations and
to the viscous MHD equations.

Proposition 3. If matrix K;; =k; -k; has the formK;; = br;j/q, wherer;;, q € Z,
then the number of solutions € A* to Eqg. (2.12)which do not belong to a finite
number? of lines and to a finite number m of planes becomes arbitrarily large when
C — o0.
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Proof. Let Py be the setPy without points of thef linesL and them planesP. An in-
tersectionL N Py has at most & + 1 points andP N Py has at most (& + 1)? points.
Hence the seP}, has at leasMy points, My = (2N + 1)3 — (2N + 1) — m(2N + 1)?
and the above proof applies becaus&, =[My/ )" |r,-j|N2] ~ c¢N — oo when
C— o0 U

3. Exact solutions with crystallographic symmetries

() As is known[11], a crystallographic (or space) gro@is generated by three basis
translationsx = x + p; and the generators of the point grofipc O(3) combined with
non-primitive translationsy € RR3, whereQ € I'. The group transformé = Ox + tp are
denoted agQ|tp). The multiplication law is

(Qlto) - (R[tr) = (ORItgr),  tor= Otr +1p. (3.1)

The groupG representation ifR® can be chosen to satisfy the rationality condit{@rl.3)

[11]. Any element Qlty) € G with Q # 1, Q # —1, may have a line or a plane of eigen-
vectorsQx = +x with eigenvaluest1. Since any crystallographic point grodphas at
most 48 elements we have at most 46 such eigenlines and 46 eigenplanEs.deethe

set of points of the latticet* which do not belong to these eigenlines and eigenplanes. It
is evident that the sef* is invariant under the group’ action and each orbil; in E* is
isomorphic tol". Proposition Jjields thatEq. (2.12)has arbitrarily many solutions € E*
whenC — oo.

There are 219 non-isomorphic space groups in three dimensions. From the tables of these
groupg11], one finds that 52 of them have rotational point grolips SO(3). Among these
52 space groups, there are 23 symmorphic groups which are the semi-direct prodicts
and have all translatiortyy = 0. The other 29 non-symmorphic groups are extensions of
73 by the corresponding grougs.

There are 11 point crystallographic groupsz SO(3): the trivial one, four cyclic groups
C,, four dihedral group®,,, n = 2, 3, 4, 6, the tetrahedral group (rotations of a regular
tetrahedron), and the octahedral grdDdpfrotations of a cube). The groups have respec-
tively 1, n, 2n, 12 and 24 elements. The grou@s, C4, D2, D4, T andO leave invariant
a lattice with orthonormal basky, e, e3 and the group€’s, Cg, D3, Dg One with basis
er. (1/2)e1 + (1/2)v/3e2, €3.

(I) A vector field V(¢, x) is invariant with respect to a transforfi= Ox +to if
V(r, Ox +tg) = OV(z, X). Substituting this into Fourier serigg.3), we find the invari-
ance equations

Vok = exp=iQk - tg) OV, Pok = exp=iQk - to)pk. (3.2)

Let us construct exad-invariant solutions in the class of Beltrami fielf#s-4,12,13] In
paperd2,3] the exact solutions

V(t,X) = C1 g / /;Z[sin(ak -X)T(K) + cosgk - xX)k x T(k)]do (3.3)
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are derived along with their generalizations for the viscous MHD equations, seglhlso
HereT (k) is an arbitrary vector field tangent to the unit sph&feand o is an arbitrary
measure o152, The NSE solution§3.3) satisfy also the Beltrami equation

curlV = aV. (3.4)
Substituting Fourier serig.3)into (3.4) we obtain
kK x Vk = —iaVk. (3.5)

Cross-multiplying this equation with vectioand usind - Vi = 0, we findk? = 2. Taking
Eq. (3.5)for wave vectorQk and using the invariance equations (3.2) we find

0k x OVy = (detQ)Q(k x Vi) = —iaQVy. (3.6)

Egs. (3.5) and (3.6yield the necessary condition f@-invariance: deQ = 1 forall Q €
I'. Hence the Beltrami vector field8.4) can be invariant only with respect to the 52
crystallographic group§ that have purely rotational point groupsc SO(3).

Solutions toEq. (3.5)have the formVi = Ak + ik x Ax/a [2], whereAg are any real
vectors obeying the equatioAg - k = 0, A_x = Ax. FromEq. (3.2) we derive the invari-
ance condition

Agk =0 (cos(Qk -to)Ak + gsin(Qk -to)k x Ak> . (3.7)

Proposition 3implies that fore?> = C — oo there are arbitrarily many points ¢ E*
which satisfyEq. (2.12)k? = «® = C. The groupl” acts on the sef* without fixed points
and vector& and—k define different orbits of . Let us choose some representative vectors
k and—k for the orbitsI;, the real vectoré\x andA_x = Ak and define vectors gk by
formula(3.7). Hence we obtain (fof(z, xX) = 0) theG-invariant space periodic solutions

Valt. ) = & Y 0lcos(k - (x — to))Ak — = Sin(0k - (x — to))k x A,
k,Q
pVE(1, %)

-

Here summation is taken over all elemexits=s I and over the representative vectdérs
for every orbitr; that belongs to the s&f N E*, k? = o%. For the 23 symmorphic space
groupsG = I'xZ3 we havety = 0 andA gk = QAx.

pa(t.X) = C1 (3.8)

Example 4.

(a) Let lattice A* has basiser, (1/2)e1 + (1/2)v/3ez, €3. The 12 vectors=+e; +
e3, £(1/2)e1 % (1/2)v/3ex + e3 € A* have the same norfk| = +/2 and form an orbit
of the dihedral grouDg that is generated by a 60otation 01 aroundes and a 180
rotation Q> arounde;. Hence fore = ++/2, the corresponding exact solutiof88)
are invariant under the crystallographic grabpx Z2.

(b) Let lattice A* has orthonormal base, ey, e3 andk; = (1, 5, 6), ko = (2, 3, 7). We
havekf = k% = 62. For the 24 rotations of a unit cube, the 48 veci@ks, Ok, are
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different for allQ € 0. Hence forx = ++/62, the corresponding exact solutidBs8)
are invariant with respect to the symmorphic crystallographic g

(c) Using the inclusions of the groupS> C C4 C D4 C O, D2 C Dy, T C O,C3 C
D3 C Dg, Ce C Dg, we define restrictions of the examples (a) and (b) onto the sub-
groupsI” where vectord\ gx = QA (3.7) are independent on different orbits of the
group!l". Thus we obtain solution@®.8)that are invariant under the symmorphic crys-
tallographic groups™xZ3.

4. Symmetries of the NSE dynamical system

() Let Q € O(3) be any element of the holohedt#( A*) (group of orthogonal transfor-
mations that preserve the lattige), andS(r) € R® be an arbitrary smooth vector function
of t. The holohedryH (A*) always contains at least two elemegts= 1 andQ = —1.

The NSE dynamical syste2.6) and (2.7¥or f(z, x) = 0 has an infinite-dimensional
Lie groupG of symmetries

Vic(t) = exp(k - S()QV g 1g9®).  Volt) = QVolr) — S(). (4.1)

pr(r) = exp(k - SM)po-1g9(D,  Polt) = QPo(?) + pS(). (4.2)

The Lie grougGis asemidirect product of the holohedif{ A*) and the abelian Lie groulg
of vector-valued function§(f), G = H(A*)xAo. The proof follows by a straightforward
verification and can be obtained also from the Lie group anal§disof the non-periodic
Navier—Stokes equations.

(I Substituting formula€4.1) and (4.2)nto Fourier serie$2.3), we arrive at the sym-
metries

V(t, x) = QV(1, 07 x + S()]) — S, (4.3)
Vh(t, X) = OV p(t, Q7Y x + S(1)]) + pS(r).

A direct substitution t&eq. (1.1)proves that transform@.3)with any matrixQ € O(3) are
symmetries of the Navier—Stokes equations for the general non-periodic case. Transforms
(4.1)-(4.3)have a clear physical meaning: the invariance of the NSE equations (1.1) under
transforms into an accelerated frame of reference. This is a generalization of the well-known
Galilean invariance of the NSE equations wh8¢8 = ur, u = const. andpS(r) = 0. An
important point is that the transfornf.1)-(4.3)give new solutions in the standard inertial
frame of reference because the form of the Navier—Stokes equations is preserved by them.

Proposition 5. Any smooth space periodic solution to the Navier—Stekgstions (2.6)
and (2.7)can be transformed by symmetri@s1) and (4.2)nto a solution withVo(¢) =
0, f)o(t) =0.

Indeed, leto(0) = U. We apply the transforr#.1) and (4.2vhere functior(r) satisfies
the equation$(r) = —p~po(r), S(0) = U, S(0) = 0, andQ = 1. Then we get fron{4.2)
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Po(f) = 0. HenceEq. (2.7)imply Vo(r) = 0, Vo(r) = Vo(0). The second dEq. (4.1)gives
Vo(0) = Vo(0) — S(0) = 0. Hence it is sufficient to consider space periodic NSE solutions
with Vo(7) = 0, Po(z) = O.

In view of Proposition 5we study below only the space periodic NSE solutions with
Vo(r) = 0, po(r) = 0.

(1) For Vg = 0 andpg = 0, the NSE dynamical systef@.11)has a three-dimensional
Lie group of symmetrie§; = H(A*)x T2 that acts by the transformatioNg = exp(ik -
X)QV g-1(), andpk = exp(k - X) pp-1). Here vectox e R3is defined modi and hence
belongs to the toru%® and orthogonal matriQ € I'.

5. Exact solutions with non-interacting Fourier modes

() The interaction of thek- and m-modes is defined by the following terms in
Eqg. (2.11)

Zim = (K +m) x [(k —m) x (Vi x V)] (5.1)

Thek- andm-modes do not interact #xm = 0.

Theorem 6. For the Navier—Stokesquations (1.1xhek-modes of a set S do not interact
pairwise if and only if one of the following four conditions are met

(1) All wave vectork € S are parallel

(2) All wave vector lie in one plane L and the Fourier componeMg are orthogonal
to L.

(3) The vectork belong to a circumferencle - e = 0, k2 = N and vectorsVi have the
form

Vi = Ck(ae+ipk x ©), (5.2)

whereq, 8 are arbitrary reals C_x = EK.
(4) The vectork belong to a spherk? = N and vectors/y satisfy the equations

k x Vi = £iv NV, (5.3)

with the same sign for all wave vectdes= S.

The proof consists on an analysis of the vector equatigh= 0 (5.1) and follows the line
of the proof of papef9] for the space periodic solutions with the standard orthogonal vector
periods f;); = 2n8;;.

(I For any setS of the pairwise non-interacting Fourier modes, the Navier—Stokes
dynamical systenf2.11)takes the form

de 2 1
5 = KWi- Wk x (kK x fy). (5.4)

These equations define solutions to the Navier—Stokes sy&drh) provided that the
vector function®fy (r) = —k x (k x fx)/(pk?) belong to the same subspaces as the Fourier
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component¥/y for k € S and are zero for all wave vectdksoutside of the seb Thus for
the sub-case (1) dtheorem 6rectorsfi are arbitrary fok € S. For the sub-case (2) vectors
Pfx have to be orthogonal to the plahdahat contains the vectoks For the sub-case (3)
vectorsPfy should have forng5.2).

Pfi = (pk +igk)(ee+ ik x €) (5.5)
for all wave vectork belonging to the circumferende: e = 0, k? = N. For the sub-case
(4) vectorsPfy have to have the forr(b.3):

Pfk:Pk:Fﬁkka, K-Py=0 (5.6)

for all wave vectork belonging to the sphele’ = N.
As is known all solutions t&q. (5.4)have the form

t
Vi(r) = Vi (0) expk2vr) + / Pfi (1) expkv(t — 1)) dr. (5.7)
0
For the constant vectoRfx we have
Pfc - - Pf
V(@) = o + Vicexpk?n), Vi = Vie(0) — o~ (5.8)
k4y k4y

The formula(5.8) implies that for anyV(0, x), f(x) € L?(Co), the corresponding space
periodic solutionV(z, x) has a uniformly bounded noriv|2 = Dk [Vk|2 in the Hilbert
spaceL2(Co).

By the definition of the projectdPfy we havefy — Pfx = i Fxk with some coefficients
Fx(1). Thereforefk — pPfk) exp(k - x) = grad(Fk exp(k - x)). Hence we find for the body
force in(1.1).

f =gradF + p ) Pfy exp(k - x), F(t,x) =) Fu(f) exp(k - x). (5.9)
keS keS
The function F(z, X) affects only the pressurg(z, x) and does not enter the dynamical
system(5.4).
(1) To each of the four sub-cases ©heorem &here correspond the exact space peri-
odic solutiong5.7) and (5.8) We present below the solutiofs.8) with constant vectors
Pfy.

Corollary 7. For the Navier—Stokesquations (1.1yvith a steady body forcg(x), there

exists only four classes of the space periodic solutions with pairwise non-interacting Fourier
modes

(1) The two families (for the sign + and) of exact solution§2—4]:

Vyi(t, X) = % > [Pk cosk - x) £ \/iﬁk x Py sin(k - X)]
k

+ exp(=Nwr) Zk:[Bk cosk - x) £ %k x Bk sink - x)], (5.10)
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where the integral vectork satisfy the equatiok? = N and arbitrary real vectors
Bk, Px conform the equatiorBg - k = 0, Px - k = 0.For Py = 0,the linear subspaces
of the exact solutiong.10)have dimensions4 (N) that can be arbitrarily large. The
pressure i(t, X) = C + pF — pV3_ /2.

(2) The exact solutiongt,5]:

Vve(t, X) = % Y [pkcosk - X) — gk sink - x)]e
k

— % Xk:[pk sink - X) + gk cosk - X)]k x e
+ae ™y [ay cosk - x) — by sink - X)]e
k

—pe™ S [a sink - X) + by cosk - X)]K x e, (5.11)
k

where the integral vectots satisfy the equations
k-e=0, k?=N, (5.12)

anda, B, ak, bk, pk, gk are arbitraryrealsc_x = cx forc = a, b, p, g. Solutiong5.11)
have the form

Vye = aU + BeurlU, U(r, x) = fn(t, X)e,

= 37, lpecosk )~ gcsink 0]

+e My ay cos - X) — by sinfk - X)]. (5.13)
k

p(t,X) = C + pF — Sp[(B?N — a?)E? f2 + V2 ]. (5.14)

(3) The convergent series defined for any vectar A* [1]:

0]

Vin(t, X) = L_lv > kiz [Pgn cOSEN - X) + Qgn SiN(KN - X)]
k=1

+ ) exp(k2Lvt) [Arn cosn - X) + Ben Sinkn - X)] . (5.15)
=1

where vector€;,, are orthogonal to the vectar for C = A, B, P, QandL = n2. The
pressure ip(t, X) = C + pF (¢, X).
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(4) The convergent series defined for any two non-parallel vectarsdm € A* [1]:

1 & 1
V t,X) = — —_— cos(kn + £m) - x sin((kn
n.m(t X) sz;oo (kn—i-ﬂm)z[pkl (&n + £m) - X) + gke Sin((

o0
+em)-x)nxm4 Y g~ kn+em>ir, . cos(kn + £m) - x)
k,{=—o00

+ bye sin(kn 4 £m) - X)In x m, (5.16)

wherek, ¢ are arbitrary integers andy, are arbitrary constants for = a, b, p, g that
define the convergent Fourier seri@s16) The pressure ig(t, X) = C + pF(t, X).

Proof. For the sub-case (4) dfheorem 6the formulae (5.3)5.6) and (5.8)after sub-
stituting into the Fourier series (2.3) give the exact soluti@$0) The solutiong5.10)
satisfy the Beltrami equation

curlVys = FV/NVye. (5.17)

Letrs,(N) be the number of integral solutions to the equaki®r= N, k € A*. Asis known
[15], the numbers (N) for (p;); = 276;; can be arbitrarily large and the admissible integers
N # 4%(8k + 7). Each pair ok- and (k)-modes defines a two-dimensional family of the
exact solution$5.10) Hence foPx = 0 the linear subspacés, . of exact solution$5.10)
have dimensiomz 4 (N). The known identity

2
V-V)V=curlVxV+ grad(%) , (5.18)
andEq. (5.17)yield (Vy+ - V)Vyi = grad(\/IZVi/Z). HenceEgs. (1.1), (5.9) and (5.4)
imply for the pressure = C + pF — pVZ /2.

The sub-case (3) ofheorem 6for Cx = ax + ibk in (5.2) and forPfx of the form
(5.5) gives the exact solution®.11)that evidently have the forrtb.13) Eq. (5.12)im-
ply the formulaes - gradfy = 0, Afy = —Nfy, divU = 0, AU = —NU. Therefore using
the identity curl curV = grad divW — AV, we obtain cuN ye = BNU + « curlU. Hence
applying the identity (2.10) we get

[(B°N — )& fi]
> :

curlVye x Ve = (o? — g2N) curlU x U = grad

and the identity5.18)yields

[(B2N — a®)E f2 + V3]
> .

(Ve V)V ye = grad

Therefore formuldg5.14)follows from Egs. (1.1), (5.9) and (5.4)
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The exact solutionés.8) corresponding to the sub-cases (1) and (2)loforem Gake
the form(5.15) and (5.16)respectively. For these solutions we haVe )V = 0; hence
the pressureip = C + pF. O

Remark 8. For the simplest case of an orthogonal lattice of perigils; & 276;; and
N =1, Py = 0, the solutiong5.10)after the change of timerdd: = exp(— Nvr) turn into
the ABC-flows[16,17]for the fluid streamlines:

X1 = Asinxz + C COSxy, X2 = Bsinx1 + A cosx3,
x3 = Csinxz + B COSx1.

The corresponding vectoks and By in (5.10)are:kq = (1,0, 0), Bk, = (0,0, B), ko =
(0,1,0), Bk, = (C,0,0),kz = (0,0, 1), Bk, = (0, A, 0) and the minus sign is chosen in
(5.10) Hence the stationary space periodic soluti@hs0)(Px = 0) for (p;); = 274;; and

an arbitraryN £ 44(8k + 7) form an infinite family of generalizations of the ABC-flows
of dimensions-3(N) that can be arbitrarily large. The solutions also satisfy the Beltrami
Eq. (5.17)

Remark 9. Letthe vectoebe one of the coordinate unit orts, for examgdand ;) ; = §;;.
ThenEq. (5.12)readk = k1€1 + ko€, k% + k% = N. The solutiong5.11) and (5.13jor
pk = gk = 0 take the form

Vn3(t, X) = aUysz + BeurlUys, Unz = fn3€s,

fn3 = exp(=Nvr) Y [ak cosfix1 + kaxz) — bk Sin(kix1 + k2x2)]. (5.19)
k

The number of the vectoksis equal to the(N) that is the number of integral solutions to
the equatiork? + k5 = N. Let the integetV = 2*m1my, wherem1 = [[¢", ¢ = 1(mod 4)
andmy =[] p*, p = 3(mod 4) wherg andq are prime divisors oN. By Euler’s theorem
[15] the number2(N) is zero if any ofsis odd. If alls are even, then Gauss theor§ib]
states thaty(N) = 4d(m1), whered(m1) is the number of divisors af;. Therefore the
numberrz(N) can be arbitrarily large. In the formu(&.19) we have for each pak and
—k the two arbitrary parametetg andby and a free paramet@y/«. Hence the family of
exact solutiong5.19)depends omy(N) + 1 parameters.

For any two distinct positive integeks, k there are eight integral vectotsq;e; + k&
with the same norm. Henee(k? + k2) > 8. For example 65= 12 + 82 = 42 4 72, hence
the subspacsgs, of exact solutiong5.19)has dimensiom(65)+ 1 = 17.

6. Exact space periodic solutions to the two-dimensional NSE

Proposition 10. For the two-dimensional Navier—Stokes equatitihg) in the variables
t, x1, x2, the k-modes of a given set S do not interact pairwise if and only if one of the
following two conditions are met

(1) Allwave vectork e S belong to a circumferende? = N.
(2) All wave vectork e S belong to a straight lind = An.
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Proof. For the space periodic two-dimensional NEE1), the wave vector&k and the
Fourier component¥y lie in the planexs = 0. Hence we obtain for the interaction term
(5.1): Zxm = (M? — k?)Vk x Vi, and the dynamical syste(@.11)turns into

1 i
= —wn?V, — Pl (nx fa) + 550 x > (M2 —k?)Vi x Vin.

dvp
dr

k+m=n

In view of Egs. (2.4) and (2.5) we havg, = ivhn x e3/n?, wherev_p, = vn. Letn x fn =
—ipfn€s, f—n = fn- Hence the dynamical system takes the form

) k2-—rn2
= —vN“vpy + fn + k—i§=n UkUmW(k X m) - €3. (61)

dvn

dr

It is evident fromEg. (6.1)that thek- andm-modes do not interact, axm = O, if either
k2 = m? or the wave vectork andm are parallel. Hence if the s&contains two non-
parallel wave vectork andm then all vectors) € S belong to the circumferenag = N;
otherwise the seBbelongs to a straight link = An. O

Proposition 11. For the two-dimensional Navier—Stokequations (1.1with a steady
body forcef (x), there exists only two families of the space periodic solutions with pairwise
non-interacting modes

(1) The exact solutions

1 .
VN X) = > [psink - X) + gk cosk - )]k x e
keA*

+ exp=Nvr) Y [ak sink - X) + bk cosk - X)]k x e, (6.2)
keA*

where the vectorls € A* ¢ R? belong to the circumferené& = N. For px = gx = 0,
the dimension of the linear space of soluti¢<?) is equal to the»(N), the number
of solutions to the equatick? = N, wherek € A*, and can be arbitrarily large

(2) The convergent serié5.15)defined for any vectan € A* ¢ R2.

Proof. The sub-case (1) dfroposition 1Gnd formula5.8)for Vi = (bk — iax)k x eand
Pfk = (gk — ipk)k x e define the exact solution®.2). For each pair ok- and (k)-
modes we have the two-dimensional space of solut{@®). Hence forpx = gk =0
the linear space of solutior(§.2) has dimensiomy(N) that can be arbitrarily large, see
Remark 9of Section5. The solutiong6.2) are the special cases of solutiofis11) for
a =0, 8= —1. Hence the pressure is defined by form(®al4) p(t,x) = C + pF —
p(NfE +V3)/2.

The sub-case (2) dProposition 10gives the convergent seri€5.15) and p(t, X) =
C+pF. O
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7. Conclusions

We have derived a complete classification of the space periodic NSE solutions with
pairwise non-interacting Fourier modes. The classification is independent of the vector
periodsps, p2, p3. However the dimensions of invariant submanifolds of soluti@n$0)
depend on the periods in a drastic way and can be arbitrarily large if the rationality condition
(2.13)is met. There are four infinite series of invariant submanifolds for the NSE dynamical
systemgq2.11)on which all solutions are smooth and exist for all moments of time0.

The wave vectork € A* for them belong to the following four families of sets:

(1) the spheres?n A*: k? = o?,

(2) the circumferences! N A* 1 k - e=0,k? = o?,
(3) the straight lineg.1 N A*: k = an,

(4) the planesP? N A* : k -e= 0.

Heree € A, andn € A*. For the 2D periodic NSE, there are only two families of solutions
with non-interacting Fourier modes; the corresponding wave vektiangn the sets (2) and

(3). The direct and inverse cascades do not work for all these solutions since there is no
transfer of energy through the spectrum. These results imply that the stochastization of the
solutions occurs very slowly if the initial data are in a small neighbourhood of the above
invariant submanifolds. Hence the rate of stochastization is not uniform in the functional
space of the NSE solutions.

The completeness of the obtained classification implies that for any solution outside of
the above invariant submanifolds there exists necessarily a non-zero interaction between
Fourier modes. The most complex dynamics of fluid is realized for the exact space pe-
riodic solutions(5.10)that depend on all four variablesx, y, z and generically have no
geometrical symmetries.

We have shown that dynamical systef@sl1)describing space periodic solutions with
different periodsp1, p2, p3 generically are not equivalent to each other. The systems are
equivalent if and only if the corresponding lattices of periotlare connected by an or-
thogonal transformation.

We have derived exact NSE solutiof8) that are invariant with respect to any of the
52 crystallographic groups that have purely rotational point groupsc SO(3). Herel”
is either a cycliaC,, or a dihedral grou,,, n = 2, 3, 4, 6, or the tetrahedral groupor the
octahedral grou®. The obtaineds-invariant exact solutions depend on all four variables
1, x1, x2, x3.
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